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Europa, which might persist for decades after
local geological activity has ceased (31). We
have not detected any such endogenic hot
spots. Upper limits to hot spot circular-equiv-
alent diameter and temperature in the 18% of
Europa’s surface covered by our most sensi-
tive observations (the low-latitude nighttime
coverage shown in Fig. 1) are 16.8 km at 130
K, 6.2 km at 200 K, 3.4 km at 273 K, or 2.0
km at 350 K. This is much fainter than a brief
thermal event tentatively identified in 1981
ground-based observations (32).
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An Aqueous Channel for
Filamentous Phage Export

Denise K. Marciano, Marjorie Russel,* Sanford M. Simon*

Filamentous phage f1 exits its Escherichia coli host without killing the bacterial
cell. It has been proposed that f1 is secreted through the outer membrane via
a phage-encoded channel protein, pIV. A functional pIV mutant was isolated
that allowed E. coli to grow on large maltodextrins and rendered E. coli sensitive
to large hydrophilic antibiotics that normally do not penetrate the outer mem-
brane. In planar lipid bilayers, both mutant and wild-type pIV formed highly
conductive channels with similar permeability characteristics but different
gating properties: the probability of the wild-type channel being open was
much less than that of the mutant channel. The high conductivity of pIV
channels suggests a large-diameter pore, thus implicating pIV as the outer
membrane phage-conducting channel.

The pIV protein is one of three filamentous
phage proteins that are not part of the f1
virion but are required for phage export from
the host bacterium. Interest in pIV has been
stimulated by its sequence similarity to pro-
teins in the type IV pilus assembly and in
transport pathways, including type II and
type III secretion systems (1). Both of these
complex secretion systems mediate the ex-
port of proteins in Gram-negative bacteria. In
type II secretion, toxins or degradative en-
zymes are secreted into the extracellular mi-
lieu; in type III secretion, proteins are secret-
ed and injected directly into the cytosol of
eukaryotic host cells, causing cytotoxicity.
Bacteria with type II or type III secretion

systems include such notorious animal and
plant pathogens as Yersinia, Salmonella, Shi-
gella, and Erwinia, all of which express a pIV
homolog necessary for secretion or virulence.
Although it has been postulated that pIV and
its homologs function as outer membrane
channels, there has been no direct evidence to
support this hypothesis.

The pIV protein exists as a large homo-
multimer in the outer membrane of E. coli.
Purified multimers are large cylindrical struc-
tures, as viewed by scanning transmission
electron microscopy (STEM) (2). The fila-
mentous phage is approximately 1 mm long
with a diameter of 6 to 7 nm. A simple
diffusion pore 6 to 7 nm in diameter would
cause E. coli to be very sensitive to external
stresses. However, phage-infected E. coli
maintain long-term viability. Thus, if pIV
were to form a channel, it would most likely
be opened only during phage export by a
gating mechanism.
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We used two assays to test whether pIV
increased the permeability of the E. coli outer
membrane: sensitivity to large antibiotics and
growth on large carbohydrates. Vancomycin
is an antibiotic that cannot cross the bacterial
outer membrane because of its hydrophilicity
and large size [molecular weight (MW) 5
1449]. Wild-type pIV (pIV1) and pIV with a
point mutation at Ser324 3 Gly324

(pIVS324G), which still functioned for phage
export, were synthesized from plasmids at
slightly lower levels than in phage-infected
cells (3). Expression of pIVS324G substantial-
ly increased the sensitivity of E. coli to van-
comycin, whereas pIV1 did not (Fig. 1A)
(4). Even without vancomycin, bacteria with
pIVS324G did not grow well. However, their
growth defect was fully rescued by the addi-
tion of 20% sucrose, an osmoprotectant that
does not cross the inner membrane, further
suggesting that pIVS324G makes the outer
membrane permeable (3). The pIVS324G

made bacteria sensitive to concentrations of
vancomycin 100-fold lower than those affect-
ing envA and tolQ mutants, which are known
to have leaky outer membranes (5). Experi-

ments with bacitracin (MW 5 1411) gave
similar results as the vancomycin experi-
ments (3).

To test if pIV increased the permeability
to carbohydrates, we expressed pIV in the
strain MCR106, which has a 501–base pair
internal deletion of the gene lamB encoding
an outer membrane maltoporin (6), and grew
the strain on plates containing sugars of in-

creasing size (Fig. 1B). In the absence of
LamB, E. coli are unable to grow on malto-
dextrins larger than maltotriose (7). Esche-
richia coli expressing low levels of pIVS324G

grew on 0.2% sugars up to maltohexaose (8).
They also grew on maltoheptaose, albeit
poorly, when sugar concentrations were in-
creased to 0.4% (3). Bacteria expressing
pIV1 grew poorly on maltotriose and did not
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Fig. 1. Vancomycin sensitivity and growth on maltodextrins. (A) Serial dilutions
of E. coli strain K1712 containing the indicated plasmid were plated on tryptone
broth plates 6 1 mM IPTG and increasing concentrations of vancomycin.
Colony-forming units (CFU) were determined after 24 hours at 37°C. (B) Cultures
of MC4100 pPMR131 (lamB1, empty vector), MCR106 pPMR131 (DlamB106,
empty vector), MCR106 pPMR132 (DlamB106, pIV1), and MCR106 pPMR132S324G (DlamB106, pIVS324G) were washed with M63 salts, and plated on
minimal media containing M63 salts, 10 mM IPTG, 50 mg/ml chloramphenicol, and 0.2% (w/v) of the indicated sugar. Growth was assessed after 36
hours at 37°C. Shown is one of three similar experiments. (C) The same strains as in (B) (minus MC4100DlamB106, pIVS324G) were washed and plated
on minimal media containing M63 salts, 1 mM IPTG, 50 mg/ml chloramphenicol, and the indicated sugar. Growth was assessed after 6 days at 37°C.
Shown is one of three similar experiments.

Fig. 2. Purification of mutant
pIV. (A) Silver-stained SDS–poly-
acrylamide gel electrophoresis
(SDS-PAGE) gel showing major
purification steps. His-tagged
pIVS324G was expressed from
plasmid pPMR132S324G in strain
K1312 (MC4100 ompR::Tn10).
Lane 1 (13 load), total cell ly-
sate; lane 2 (43), solubilized
membranes; lane 3 (403), elu-
tion from the Ni21-Sepharose
column; and lane 4 (403),
pooled peak fractions from the
BioGelA5M column. (B) Silver-
stained SDS-PAGE gel showing the elution profile of pIV from the BioGel column. Gel filtration
standards are indicated. Purification of wild-type pIV was similar (3). F23 through F44 indicate the
fractions analyzed.
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grow on the larger maltose sugars under these
conditions.

Escherichia coli expressing pIV1 grew on
maltodextrins larger than maltotriose only when
both the sugar concentration and growth time
were increased (Fig. 1C). Under these condi-
tions, pIV1 conferred a growth advantage over
the empty vector control. As the sugar size
increased, bacteria with pIV1 required higher
sugar concentrations to grow; colonies could be
seen on maltohexaose only when the concen-
tration was increased to 0.6%. The modest
growth advantage due to pIV1 was not the
result of mutation, because all of the plated cells
formed colonies and these bacteria grew just as
slowly after restreaking (9).

To directly test for channel activity in
electrophysiological assays, we purified His-
tagged pIV1 and pIVS324G and reconstituted
them into proteoliposomes (10). The pIV pro-
teins were purified by nickel-chelate and size
exclusion chromatography (Fig. 2). Both

wild-type and mutant proteins eluted in sim-
ilar fractions corresponding to ;670 kD, in-
dicating that they exist as multimers of sim-
ilar size. In addition, both forms of pIV ap-
peared similar by negative staining electron
microscopy (3). Both His-tagged proteins
were functional, as assessed by their ability to
function in phage export (11). Proteolipo-
somes with pIVS324G were fused to planar
lipid bilayers. Large, single channels were
observed at positive and negative voltages
(1Vm and –Vm) (Fig. 3, A and B). Initially,
an additional smaller channel was observed
that had characteristics similar to those pre-
viously reported for OmpC (12). Subsequent-
ly, pIV was purified from an E. coli ompR
strain, which contains low amounts of the
porins OmpC and OmpF. The ratio of porin
to pIV from cell lysates of the ompR strain
was 50 times lower than in the original strain
(3), and contaminating channels were very
rarely observed after purification. A record-

ing of pIVS324G channels with a contaminat-
ing channel illustrates the markedly greater
current through pIV channels (Fig. 3A). Both
pIVS324G and pIV1 independently displayed

Fig. 3. Current traces of pIVS324G and
pIV1. (A) Channels of pIVS324G (117 pA)
are ninefold larger than a porin channel
(*) at 180 mV. (B) pIVS324G channels
from ompR strain K1312. (C) pIV1 chan-
nels at various voltages. In (B) and (C),

the traces were vertically displaced for clarity and marked as closed (C), or with one (O1) or two
(O2) open channels. The solution for (A) was 285 mM NaCl in the cis and 150 mM in the trans
chamber. In (B) and (C), 150 mM KCl was in both chambers. All solutions contained 10 mM
NaHepes (pH 7.4), 5 mM MgCl2, and 5 mM CaCl2.

Fig. 4. Current-voltage relationships of
pIVS324G. (A) The average current for the
closed, single open (O1), and double open (O2)
pIVS324G channels in 150 mM salt (cis and
trans) was plotted. (B) The O1 currents for
pIVS324G channels were measured in salt gradi-
ents of 150/10, 150/150, and 150/300 mM KCl
in the cis and trans chambers, respectively. Both
chambers had 10 mM KHepes (pH 7.4), 5 mM
MgCl2, and 5 mM CaCl2. In (A) and (B), each
data point is the current average 6 SD calcu-
lated from an all-points histogram from several
traces of a single experiment. Shown is one of
five similar experiments. (C) Probability of time
in the closed state (Pclosed) for mutant and
wild-type pIV. The voltage was increased in
20-mV steps with a return to 0 mV between
each step. We calculated Pclosed from an all-
points amplitude histogram of a 2-min record-
ing for each voltage: Pclosed 5 St closed/St closed
1 topen. Experiments were done in 150 mM
KCl, 10 mM NaHepes (pH 7.4), 5 mM MgCl2,
and 5 mM CaCl2. Shown is one of two similar
experiments.
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the same channel behavior when purified
from either strain (3).

Most attempts to detect channels with
pIVS324G were successful (n . 40). At low
voltages (–20 mV , Vm , 140 mV) there
were occasional channel openings (Figs. 3B
and 4C). At intermediate voltages (Vm , –20
mV or Vm . 150 mV) channels opened to two
different current levels, O1 and O2, where O2
was double the size of O1. At larger voltages
(Vm , –80 mV or . 1120 mV) only the larger
O2 current level was observed. When several
pIV multimers were incorporated into the bi-
layer, the maximum current was a multiple of
the O2 current. This suggests that a pIV multi-
mer has two conductance states or that the
multimers reconstitute in pairs.

There were three distinct effects of voltage
on the activity of the channel. First, at positive
potentials, the channels required a greater volt-
age to open than at negative potentials. Second,
the single-channel conductance of pIVS324G

was larger at 1Vm than it was at –Vm. This can
be seen both in the single-channel recordings
(Fig. 3B) and in the current-voltage plot, where
opening to the first conductance level (O1) was
1.22 6 0.03 nS (6SD) at 80 mV and 0.90 6
0.10 nS at –80 mV in 150 mM KCl (Fig. 4A).
The asymmetric response to the polarity of the
voltage suggests that pIVS324G channels recon-
stitute into the lipid bilayer with a common
asymmetry. Third, the channel conductance in-
creased with increasing voltage. The selectivity
of pIVS324G channels was determined by two
criteria: quantification of channel current and
reversal potential in varying salt solutions (Fig.
4B). They were approximately four times more
permeable to potassium than to chloride.

In contrast to pIVS324G, channels from
pIV1 (n 5 7) were observed only at very
high voltages (Vm . 180 mV or Vm , –120
mV), which made them more difficult to
characterize. For a given voltage, the O1
conductance for pIV1 was less than that for
pIVS324G. At 1200 mV, the O1 conductance
of pIV1 was 1.2 6 0.2 nS (13) and the
percentage of time open was 5% (Fig. 4C). At
180 mV, the pIVS324G channel conductance
and probability of being open closely resem-
bled that of pIV1 at 1200 mV. Thus, the
pIVS324G channel behaved as if the mutation
shifted its voltage dependence, thereby in-
creasing the likelihood of the channel being
open at lower voltages.

The channels formed by pIVS324G and
pIV1 have many features in common. (i)
Both reconstitute into membranes with a
common asymmetry, with a larger channel
conductance at 1Vm than –Vm. (ii) Both have
similar cationic selectivity. (iii) Both have a
greater probability of opening when at greater
Vm. (iv) Both are more likely to open when
Vm is negative (Fig. 4C). (v) Both channel
conductances increase with increasing Vm.
(vi) Both are extremely large channels in

comparison to known porin molecules such
as OmpC, whose conductance is 110 pS at
150 mM KCl (12). The primary difference
between pIVS324G and pIV1 channels is their
probability of opening. This difference con-
firms that the channel activity is due to pIV
and not a contaminant.

The pIV pore diameter is estimated to be 6
nm if it is assumed that a pIV multimer has two
conductance states (14). This diameter is large
enough to accommodate an extruding phage (6
to 7 nm) and is consistent with measurements of
pIV pore diameter (7 to 8 nm) in the STEM (2).
The pIVS324G is open much more frequently
than pIV1 at voltages likely to exist across the
outer membrane (15). This is consistent with the
growth and antibiotic sensitivity experiments,
indicating that the electrophysiological record-
ings reflect the in situ behavior of the protein. It
is also consistent with pIV1 being a tightly
gated channel. Transmembrane aqueous chan-
nels have been shown to function in the trans-
port of ions and metabolites and the transloca-
tion of DNA and unfolded proteins (16, 17).
The sequence similarity between pIV and nu-
merous proteins involved in pilus assembly or
secretion of folded proteins (18) suggests that
use of large, gated channels may be a general
mechanism for supramolecular transport.
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